
ARMY RESEARCH LABORATORY

Software Change-Merging
in Dynamic Evolution

CPT David A. Dampier
U.S. ARMY RESEARCH LABORATORY

Valdis Berzins
NAVAL POSTGRADUATE SCHOOL

•:::£>>>:-:£:*:::*&x££&

ARL-TR-841
»k; KÄS*£

H >?:'W

M
August 1995

19951011 075
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

DTI® QUALITY INSPECTED S

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute
indorsement of any commercial product.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

TüBlc"rBpö7SigTürd«noMriIäT5ipctl«^iTn^^
gathering and maintaining the data needed, and completing and reviewing the collection of Information. Send commente regarding thie burden eedmate or any other aspect of thfe
collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operatione and Reports, 1215 Jefleisuii
Divli Hqhwav, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget Paperwork Reduction PrelecK0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1995
3. REPORT TYPE AND DATES COVERED

Final, Aug-Sep 94
4. TITLE AND SUBTITLE

Software Change-Merging in Dynamic Evolution

6. AUTHOR(S)

David A. Dampier and Valdis Berzins

5. FUNDING NUMBERS

N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Computer Science Department
Naval Postgraduate School

U.S. Army Research Laboratory
ATTN: AMSRL-SC-IS
115 O'Keefe Building, GIT
Atlanta, GA 30332-0800

833 Dyer Road
Monterey, CA 93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-841

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

This paper was presented at the 1994 Monterey Workshop on Increasing the Impact of Formal Methods in Software
Engineering, September 1994.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This position paper outlines a formal method for applying change-merging tools in dynamic evolution. During
software evolution, different variations of a software system are generally developed. The need to apply a common
change to each of these different versions will likely occur during the lifetime of the system. It may also be desirable
to combine the unique capabilities of two different versions into a new version. Because these software systems can
be very large, tools that automatically perform these tasks are desirable. Change-merging provides the capability for
such a tool.

14. SUBJECT TERMS

change-merging, formal methods, software evolution, prototyping,
automated maintenance

15. NUMBER OF PAGES

11
16. PRICE CODE

20. UMTATION OF ABSTRACT

UL

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

INTENTIONALLY LEFT BLANK.

11

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. EVOLUTIONARY PROTOTYPING 1

3. EVOLUTION IN CAPS 1

4. CHANGE-MERGING 2

5. CHANGE-MERGING IN EVOLUTION 2

6. SUMMARY AND FUTURE WORK 4

7. REFERENCES 5

BIBLIOGRAPHY 7

DISTRIBUTION LIST 9

Aesassian ?er
,f ii I r J ii

[iris QRA&I ET-
I DTIC TAB D

i Jus I ifiorttloa.

ill

Distribution/

A va 11 a]j 111 *-jC °^5_
Avail and/or

Special

a

INTENTIONALLY LEFT BLANK.

IV

1. INTRODUCTION

During software evolution, different variations of a software system are generally developed. The

need to apply a common change to each of these different versions will likely occur during the lifetime

of the system. It may also be desirable to combine the unique capabilities of two different versions into

a new version. Because these software systems can be very large, tools that automatically perform these

tasks are desirable. Change-merging provides the capability for such a tool.

2. EVOLUTIONARY PROTOTYPING

Rapid prototyping is an evolutionary approach to software development that was introduced to

overcome the following weaknesses of traditional approaches:

(1) fully developed software systems that do not satisfy the customer's needs, or are obsolete upon

release

(2) no capability for accurately evaluating real-time requirements before the software system has been

built

Rapid prototyping overcomes these weaknesses by increasing customer interaction during the

requirements engineering phase of development, providing executable specifications that can be evaluated

for conformance to real-time requirements, and producing a production software system in a fraction of

the time required using traditional methods. Rapid prototyping allows the user to get a better

understanding of requirements early in the conceptual design phase of development. It involves the use

of software tools to rapidly create concrete executable models of selected aspects of a proposed system

to allow the user to view the model and make comments early. The prototype is rapidly reworked and

redemonstrated to the user over several iterations until the designer and the user have a precise view of

what the system should do. In this approach to rapid prototyping, software systems can be delivered

incrementally as parts of the system become fully operational (Dampier 1994).

3. EVOLUTION IN CAPS

The Computer-Aided Prototyping System (CAPS) is an evolutionary prototyping system designed to

prototype embedded, real-time systems (Luqi and Ketabchi 1988). CAPS consists of a set of prototyping

1

tools connected together by a graphical user interface. One of these tools is an Evolution Control System

that not only provides version and configuration control for the software system, but also provides project

management control in the form of scheduling development tasks and automatic assignment of designers

to those tasks. In the version and configuration control model for the system, development histories are

represented using variations and versions. Each variation number represents a parallel development

history, and the version number represents the number of different versions in that particular variation.

A variation/version number of 3.5 for a prototype means that this is the fifth version in the third variation.

4. CHANGE-MERGING

Change-merging is an integral part of the evolution methodology. During evolutionary development,

multiple variations of a large system are likely to be developed. This can happen when independent

development teams are working on different aspects of a system, or when alternate possible solutions to

a problem are explored in different ways. Change-merging will allow the combination of these

independently developed variations to be done automatically, ensuring that the resultant system is

semantically correct, with respect to all of the input variations, or it will report all conflicts preventing

correct change-merging. This technology encourages the designer to explore multiple solutions to a

problem, and to spread the development workload in a large project without concern for the subsequent

integration of these independent efforts (Dampier 1994).

Change-merging is a process by which significant changes between a base version of a software

system and multiple modified versions can be isolated and combined into a single program as shown in

Figure 1. As long as the changes do not conflict with one another, the result will be a program with the

capabilities of all of the modified versions. Syntax-based change-merging methods like the revision

control system (RCS) and source code control system (SCCS) do this by manipulating code and can

produce a result that is syntactically correct (Silverberg 1992; Tichy 1982). They cannot provide any

guarantee of correctness, however, so semantics-based methods are needed.

5. CHANGE-MERGING IN EVOLUTION

Software change-merging can be used in several different ways in software evolution. As we already

stated, it can be used to combine different changes to the same base program. It can also provide a way

to update multiple existing versions of a program with a change made to the common base version as

T.I ►• 1.7, ^- 1.3 *- 1.4 >■ 1.5 *■ 1.6

1.4

1.3

1.5

1.6

Figure 1. Change-merging two modified versions of a common base version.

illustrated in Figure 2. In this example, version 1.1 is the base, versions 1.2 and 2.2 are the modified

versions, and version 3.2 is the changed base. The result of each of these operations is a modified version

updated with the common change. It can also be used to check consistency between independently

developed versions. If a change-merge operation applied to two independently developed versions does

not produce a conflict, then the versions are consistent

1.2

1.3 1.1

3.2

2.2

2.3

3.2

Figure 2. Updating multiple modifications with a change to the common base.

Another possible use of this technology is retracting changes from an evolution history. This idea is

useful if after several iterations of the evolutionary process, the customer decides a feature of the software

is no longer desired. Using change-merging, it should be possible to automatically retract the change as

long as the retraction does not cause a conflict in subsequent changes. The result of this operation would

be a version that contains all of the capability in the most recent version of the system, except that

contained in the retracted change, as shown in Figure 3.

1.1 1.3

Figure 3. Retracting an earlier change from a subsequent version.

This example is designed to illustrate the removal of the change resulting in version 1.4 from

version 1.5. Since 1.4 is the base version of the change-merge operation, the significant change from 1.4

to 1.3 is the retraction needed. This retraction must be preserved in the change-merged version 1.6.

6. SUMMARY AND FUTURE WORK

We have developed a slicing method for change-merging prototypes written in the prototype system

description language (PSDL), the prototyping language associated with CAPS (Dampier 1994). This

method will always produce a correct change-merged version if a conflict is not detected. Future work

will include improving the resolution of the tool to prevent conflict reporting when no conflict exists, and

trying to develop a change-merge method for other languages, perhaps Ada.

7. REFERENCES

Dampier, D. "A Formal Method for Semantics-Based Change-Merging of Software Prototypes." PhD.
Dissertation, Naval Postgraduate School, Monterey, CA, June 1994.

Luqi, and M. Ketabchi. "A Computer Aided Prototyping System." IEEE Software, pp. 66-72, March
1988.

Silverberg, I. Source File Management with SCCS, Prentice Hall, Englewood Cliffs, NJ, 1992.

Tichy, W. "Design, Implementation, and Evaluation of a Revision Control System." Proceedings of the
6th International Conference on Software Engineering, IEEE, Tokyo, pp. 58-67, September 1982.

INTENTIONALLY LEFT BLANK.

BIBLIOGRAPHY

Badr, S. "A Model and Algorithms for a Software Evolution Control System." Ph.D. Dissertation, Naval
Postgraduate School, Monterey, CA, December 1993.

Berzins, V. "On Merging Software Extensions." Acta Informatica. Springer-Verlag, pp. 607-619,1986.

Luqi, V. Berzins, and R. Yeh. "A Prototyping Language for Real Time Software." IEEE Transactions
on Software Engineering, pp. 1409-1423, October 1988.

INTENTIONALLY LEFT BLANK.

NO. OF
COPIES ORGANIZATION

ADMINISTRATOR
ATTN DTIC DDA
DEFENSE TECHNICAL INFO CTR
CAMERON STATION
ALEXANDRIA VA 22304-6145

DIRECTOR
ATTN AMSRL OP SD TA
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
ATTN AMSRL OP SD TL
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
ATTN AMSRL OP SD TP
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

DIRUSARL
ATTN AMSRL OP AP L (305)

NO. OF
COPIES ORGANIZATION

2 NAVAL POSTGRADUATE SCHOOL
ATTN DR VARDIS BERZINS
COMPUTER SCIENCE DEPT
MONTEREY CA 93943

1 DIR USARL
ATTN AMSRL SC I
115 0KEEFEBLDG
ATLANTA GA 30332-0800

50 DIR USARL
ATTN AMSRL SC IS
115 OKEEFE BLDG
ATLANTA GA 30332-0800

2 DIR USARL
ATTN AMSRL SC IS
CPT DAVID A DAMPffiR
115 OKEEFE BLDG
ATLANTA GA 30332-0800

ABERDEEN PROVING GROUND, MD

DIR USARL
ATTN AMSRL SC

10

4

4

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number ARL-TR-841 Date of Report August 1995

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report

will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to

organization, technical content, format, etc.)

Organization

CURRENT Name
ADDRESS

Street or RO. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the
Old or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or RO. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

